direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Suche

Suche nach Publikationen




alle Publikationen (Reviews, Articles, Meetings and Proceedings)

Electrostatic-field dependent activation energies modulate electron transfer of cytochrome c
Zitatschlüssel ISI:000179732100023
Autor Murgida, D H and Hildebrandt, P
Seiten 12814-12819
Jahr 2002
ISSN 1520-6106
DOI 10.1021/jp020762b
Adresse 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
Journal J. Phys. Chem. B
Jahrgang 106
Nummer 49
Monat DEC 12
Verlag AMER CHEMICAL SOC
Zusammenfassung Cytochrome c was electrostatically bound on Ag electrodes coated with self-assembled monolayers of carboxyl-terminated alkylthiols. Employing stationary and time-resolved surface enhanced resonance Raman spectroscopy, activation energies of the interfacial redox process were determined as a function of the electric field strength that was controlled by varying protein-electrode distance via the thiol alkyl chain length. At weak electric fields (long chain lengths), temperature- and overpotential-dependent measurements consistently yield a reorganization energy of 0.26 and 0.22 eV, respectively, which is distinctly lower than for cytochrome c in solution. This decrease is attributed to the lowering of the contribution of solvent reorganization for the reaction of the immobilized protein. At short alkyl chain length, high electric fields strongly raise the activation barrier for the structural reorganization of the protein and the rearrangement of the hydrogen bond network becomes rate limiting for the interfacial redox process as indicated by the H/D kinetic isotope effect, that increases with the electric field strength (Murgida, D. H.; Hildebrandt, P. J. Am. Chem. Soc. 2001, 123, 4062-4068). Thus, rate constants measured as a function of the temperature provide the activation enthalpy for the underlying proton-transfer steps. The values of 24.2 and 34.3 kJ mol(-1) determined in H2O and D2O, respectively, as well as the ratio of the preexponential factors A(H2O)/A(D2O) of ca. 0.8 cannot be reconciled within the semiclassical description of proton transfer but indicate thermally activated nuclear tunneling. The electric-field-induced alteration of the activation barrier that controls the dynamics of the interfacial electron transfer of cytochrome c may represent a general mechanism for modulating biological charge-transfer dynamics at membranes.
Typ der Publikation Article
Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.