direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Search

Search for publications




all Publications (Reviews, Articles, Meetings and Proceedings)

Perturbation of the Redox Site Structure of Cytochrome c Variants upon Tyrosine Nitration
Citation key Ly2012
Author Ly, H. Khoa and Utesch, Tillmann and Diaz-Moreno, Irene and Garcia-Heredia, Jose M. and Angel De La Rosa, Miguel and Hildebrandt, Peter
Pages 5694–5702
Year 2012
DOI 10.1021/jp302301m
Journal Journal of Physical Chemistry B
Volume 116
Number 19
Month may
Abstract Post-translational nitration of tyrosine is considered to be an important step in controlling the multiple functions of cytochrome c (Cyt-c). However, the underlying structural basis and mechanism are not yet understood. In this work, human Cyt-c variants in which all but one tyrosine has been substituted by phenylalanine have been studied by resonance Raman and electrochemical methods to probe the consequences of tyrosine nitration on the heme pocket structure and the redox potential. The mutagenic modifications of the protein cause only subtle conformational changes of the protein and small negative shifts of the redox potentials which can be rationalized in terms of long-range electrostatic effects on the heme. The data indicate that the contributions of the individual tyrosines for maintaining the relatively high redox potential of Cyt-c are additive. Nitration of individual tyrosines leads to a destabilization of the axial Fe-Met80 bond which causes the substitution of the native Met ligand by a water molecule or a lysine residue for a fraction of the proteins. Electrostatic immobilization of the protein variants on electrodes coated by self-assembled monolayers (SAMs) of mercaptounadecanoic acid destabilizes the heme pocket structure of both the nitrated and non-nitrated variants. Here, the involvement of surface lysines in binding to the SAM surface prevents the replacement of the Met80 ligand by a lysine but instead a His-His coordinated species is formed. The results indicate that structural perturbations of the heme pocket of Cyt-c due to tyrosine nitration and to local electric fields are independent of each other and occur via different molecular mechanisms. The present results are consistent with the view that either tyrosine nitration or electrostatic binding to the inner mitochondrial membrane, or both events together, are responsible for the switch from the redox to the peroxidase function.
Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.