direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content


Search for publications

all Publications (Reviews, Articles, Meetings and Proceedings)

Comparative resonance Raman-study of cytochrome-c-oxidase from beef-heart and Paracoccus denitrificans
Citation key ISI:A1993MB49700042
Author Heibel, G and Hildebrandt, P and Ludwig, B and Steinrucke, P and Soulimane, T and Buse, G
Pages 10866-10877
Year 1993
ISSN 0006-2960
Address 1155 16TH ST, NW, WASHINGTON, DC 20036
Journal Biochemistry
Volume 32
Number 40
Month OCT 12
Abstract Well-resolved, Soret band excited resonance Raman spectra were measured from the fully oxidized and fully reduced cytochrome c oxidase from beef heart and Paracoccus denitrificans. The vibrational patterns in the marker band region (1450-1700 cm-1) were analyzed, and a complete assignment of heme a and heme a3 vibrational modes is presented, permitting a detailed structural comparison of the mammalian and bacterial enzymes. Similar frequencies of the porphyrin modes for the reduced heme a and the reduced and oxidized heme a3 are found, indicating a close relationship of the ground-state conformations in all oxidase species studied. In oxidized heme a, however, significant frequency differences are observed and interpreted in terms of a ruffled porphyrin structure in the three- and two-subunit forms of the Paracoccus enzyme compared to the planar heme a of beef heart oxidase. The structural distortions, which also perturb the conformation of the formyl substituent and its electronic coupling with the porphyrin, reflect the specific heme-protein interactions at heme a. Since in the fully reduced state heme a appears to be largely planar in all oxidase species, the redox-linked conformational transition requires a more drastic rearrangement of the heme a-protein interactions in the bacterial than in the mammalian oxidase. For both heme a and heme a3 in the reduced state and for heme a3 in the oxidized state, frequency, intensity, and bandwidth differences of the formyl stretching vibration and intensity differences of some porphyrin modes are noted between the three oxidase forms. The same modes are also affected by quaternary structure changes in the bovine oxidase caused by different detergents and isolation procedures. These effects are attributed to differences of the dielectric properties of the heme environment, due to subtle structural changes in the heme pockets, induced by protein-protein interactions of subunit III with subunits I and/or II.
Bibtex Type of Publication Article
Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.