direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content


Search for publications

all Publications (Reviews, Articles, Meetings and Proceedings)

Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore
Citation key ISI:000232229700079
Author Borucki, B and von Stetten, D and Seibeck, S and Lamparter, T and Michael, N and Mroginski, M A and Otto, H and Murgida, D H and Heyn, M P and Hildebrandt, P
Pages 34358-34364
Year 2005
ISSN 0021-9258
DOI 10.1074/jbc.M505493200
Address 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
Journal J. Biol. Chem.
Volume 280
Number 40
Month OCT 7
Abstract The P-r–>P-fr phototransformation of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens and the structures of the biliverdin chromophore in the parent states and the cryogenically trapped intermediate Meta-R-C were investigated with resonance Raman spectroscopy and flash photolysis. Strong similarities with the resonance Raman spectra of plant phytochrome A indicate that in Agp1 the methine bridge isomerization state of the chromophore is ZZZasa in P-r and ZZEssa in P-fr, with all pyrrole nitrogens being protonated. Photoexcitation of P-r is followed by ( at least) three thermal relaxation components in the formation of Pfr with time constants of 230 mu s and 3.1 and 260 ms. H2O/D2O exchange reveals kinetic isotope effects of 1.9, 2.6, and 1.3 for the respective transitions that are accompanied by changes of the amplitudes. The second and the third relaxation correspond to the formation and decay of Meta-R-C, respectively. Resonance Raman measurements of Meta-R-C indicate that the chromophore adopts a deprotonated ZZE configuration. Measurements with a pH indicator dye show that formation and decay of Meta-R-C are associated with proton release and uptake, respectively. The stoichiometry of the proton release corresponds to one proton per photoconverted molecule. The coupling of transient chromophore deprotonation and proton release, which is likely to be an essential element in the P-r–>P-fr photoconversion mechanism of phytochromes in general, may play a crucial role for the structural changes in the final step of the Pfr formation that switch between the active and the inactive state of the photoreceptor.
Bibtex Type of Publication Article
Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.